Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Photochem Photobiol B ; 255: 112908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663336

RESUMO

The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.


Assuntos
Túnica Conjuntiva , Ferroptose , Luz , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator de Transcrição STAT3 , Animais , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/efeitos da radiação , Túnica Conjuntiva/patologia , Camundongos , Ferroptose/efeitos da radiação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Peroxidação de Lipídeos/efeitos da radiação , Linhagem Celular , Epitélio/efeitos da radiação , Epitélio/metabolismo , Epitélio/patologia , Transdução de Sinais/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Células Epiteliais/patologia , Espécies Reativas de Oxigênio/metabolismo , Fenilenodiaminas/farmacologia , Luz Azul , Cicloexilaminas
2.
Cell Death Discov ; 10(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589350

RESUMO

Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.

3.
Exp Eye Res ; 241: 109827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354945

RESUMO

Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.


Assuntos
MicroRNAs , Miopia , Humanos , Animais , Camundongos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Corpo Vítreo/metabolismo , RNA Mensageiro/metabolismo , RNA Endógeno Competitivo , Miopia/genética
4.
Int Ophthalmol ; 44(1): 21, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324137

RESUMO

PURPOSE: Myopia is one of the most common forms of refractive error. Most myopia manifests itself as a relative growth of the eye axis, resulting in a state in which light is projected in front of the retina after being refracted by the refractive system of the eyeball. So far, the specific pathogenesis of myopia is still not well explained, through the results of animal experiments, researchers have proposed various possible scenarios, but all these are based on animal models, and there may still be a certain gap with the mechanism of true myopia in humans. The most readily available in clinical work is aqueous humor obtained during cataract surgery, for which we reviewed these studies of aqueous humor samples from myopic patients. METHODS: A systematic literature search was done on PubMed using key words including "myopia," "aqueous humor," and "protein." RESULTS: The results of existing aqueous humor studies have shown that the difference in substances in the aqueous humor of myopia is related to the degradation of the scleral matrix, chronic inflammation of the eye, pro-fibrosis, blood vessel production, and inhibition. There may be more than one reason associated with myopia progression. CONCLUSION: The specific mechanism of myopia has not been fully elucidated. Therefore, the means of preventing and treating myopia should focus on inhibiting the degradation of the scleral matrix, promoting the proliferation of scleral collagen fibers, and alleviating chronic inflammation of the eyes. Further research into myopic aqueous humor may provide us with new insights.


Assuntos
Miopia , Erros de Refração , Humanos , Humor Aquoso , Inflamação , Esclera
5.
Cell Mol Neurobiol ; 44(1): 19, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315298

RESUMO

Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.


Assuntos
Células Amácrinas , Peptídeo Intestinal Vasoativo , Animais , Camundongos , Diferenciação Celular , Potenciais da Membrana/fisiologia , Retina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
6.
Eye (Lond) ; 38(6): 1065-1076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066110

RESUMO

Amacrine cells (ACs) are the most structurally and functionally diverse neuron type in the retina. Different ACs have distinct functions, such as neuropeptide secretion and inhibitory connection. Vasoactive intestinal peptide (VIP) -ergic -ACs are retina gamma-aminobutyric acid (GABA) -ergic -ACs that were discovered long ago. They secrete VIP and form connections with bipolar cells (BCs), other ACs, and retinal ganglion cells (RGCs). They have a specific structure, density, distribution, and function. They play an important role in myopia, light stimulated responses, retinal vascular disease and other ocular diseases. Their significance in the study of refractive development and disease is increasing daily. However, a systematic review of the structure and function of retinal VIP-ACs is lacking. We discussed the detailed characteristics of VIP-ACs from every aspect across species and providing systematic knowledge base for future studies. Our review led to the main conclusion that retinal VIP-ACs develop early, and although their morphology and distribution across species are not the same, they have similar functions in a wide range of ocular diseases based on their function of secreting neuropeptides and forming inhibitory connections with other cells.


Assuntos
Células Amácrinas , Peptídeo Intestinal Vasoativo , Humanos , Retina/fisiologia , Células Ganglionares da Retina , Ácido gama-Aminobutírico
7.
Exp Eye Res ; 238: 109748, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081573

RESUMO

Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.


Assuntos
Doenças da Córnea , Transdução de Sinais , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/metabolismo , Doenças da Córnea/fisiopatologia , Humanos , Córnea/metabolismo , Janus Quinases/metabolismo , Ensaios Clínicos como Assunto
8.
iScience ; 26(12): 108448, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034364

RESUMO

This study aimed to investigate the effects of long-term pollution from different wavelengths of light on the corneal epithelium (CE) and identify potential biomarkers. Rabbits were exposed to red, green, blue, white, and environmental light for 6 weeks. The CE was assessed using various techniques such as fluorescein sodium staining, transcriptome sequencing, electron microscopy, and molecular assays. In human corneal epithelial cells (hCECs), the downregulation of vascular cell adhesion molecule 1 (VCAM1) in response to blue light (BL) pollution was observed. This downregulation of VCAM1 inhibited migration, increased reactive oxygen species (ROS) levels, and apoptosis, and inhibited the AKT/p70 S6 kinase cascade in hCECs. Animal experiments confirmed that BL pollution caused similar effects on the rabbit cornea, including increased ROS production, apoptosis, delayed wound healing, and decreased VCAM1 expression. Overall, BL-induced VCAM1 downregulation may impair CE and wound healing and promote ROS and apoptosis in vitro and in vivo.

9.
Cell Death Discov ; 9(1): 418, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978169

RESUMO

In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.

10.
BMC Ophthalmol ; 23(1): 356, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582698

RESUMO

BACKGROUND: To explore differential metabolites in the aqueous humor of patients with different axial lengths and their correlations with axial length and choroidal parameters. METHODS: In this study, we included 12 patients with axial lengths less than 24 mm, 11 patients with axial lengths between 24 and 26 mm, and 11 patients with axial lengths greater than 26 mm. We collected their aqueous humor samples during cataract surgery for liquid chromatography-mass spectrometry metabolomic analysis. Simultaneously, we collected relevant clinical parameters such as axial length, subfoveal choroidal thickness, and choroidal vascular index. Correlations between clinical data, differential metabolites, and clinical indicators were analyzed. In addition, we plotted receiver operating characteristic curves. RESULTS: The results showed that axial length was significantly negatively correlated with choroidal thickness (r=-0.7446, P < 0.0001), and that several differential metabolites were significantly correlated with certain clinical parameters. After analyzing receiver operating characteristic curves, 5-methoxytryptophol and cerulenin were found to have excellent discriminative power, demonstrating their potential as biomarkers. In the enrichment analysis, we found that the differential metabolites among each group were involved in several special pathways (Taurine and Hypotaurine Metabolism, Vitamin B6 Metabolism, Pantothenate, and coenzyme A Biosynthesis), suggesting that abnormalities in these metabolic pathways may play a role in the process of axial myopia. CONCLUSIONS: Our study identified alterations in certain metabolic pathways in different axial lengths. At the same time, we found several metabolites with significant correlation with clinical indicators, among which 5-methoxytryptophol and cerulenin were associated with axial myopia. CLINICAL TRIAL REGISTRATION: Registration date:11/04/2022. TRIAL REGISTRATION NUMBER: ChiCTR2200058575. TRIAL REGISTRY: The First Affiliated Hospital of the Zhejiang University School of Medicine.


Assuntos
Humor Aquoso , Miopia , Humanos , Humor Aquoso/metabolismo , Cerulenina/metabolismo , Miopia/metabolismo , Metabolômica , Corioide , Comprimento Axial do Olho , Tomografia de Coerência Óptica
11.
Ecotoxicol Environ Saf ; 263: 115282, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494734

RESUMO

Nearly all modern life depends on artificial light; however, it does cause health problems. With certain restrictions of artificial light emitting technology, the influence of the light spectrum is inevitable. The most remarkable problem is its overload in the short wavelength component. Short wavelength artificial light has a wide range of influences from ocular development to mental problems. The visual neuronal pathway, as the primary light-sensing structure, may contain the fundamental mechanism of all light-induced abnormalities. However, how the artificial light spectrum shapes the visual neuronal pathway during development in mammals is poorly understood. We placed C57BL/6 mice in three different spectrum environments (full-spectrum white light: 400-750 nm; violet light: 400 ± 20 nm; green light: 510 ± 20 nm) beginning at eye opening, with a fixed light time of 7:00-19:00. During development, we assessed the ocular axial dimension, visual function and retinal neurons. After two weeks under short wavelength conditions, the ocular axial length (AL), anterior chamber depth (ACD) and length of lens thickness, real vitreous chamber depth and retinal thickness (LLVR) were shorter, visual acuity (VA) decreased, and retinal electrical activity was impaired. The density of S-cones in the dorsal and ventral retinas both decreased after one week under short wavelength conditions. In the ventral retina, it increased after three weeks. Retinal ganglion cell (RGC) density and axon thickness were not influenced; however, the axonal terminals in the lateral geniculate nucleus (LGN) were less clustered and sparse. Amacrine cells (ACs) were significantly more activated. Green light has few effects. The KEGG and GO enrichment analyses showed that many genes related to neural circuitry, synaptic formation and neurotransmitter function were differentially expressed in the short wavelength light group. In conclusion, exposure to short wavelength artificial light in the early stage of vision-dependent development in mice delayed the development of the visual pathway. The axon terminus structure and neurotransmitter function may be the major suffering.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Animais , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Neurais , Mamíferos
12.
Biochem Pharmacol ; 213: 115620, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217140

RESUMO

Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.


Assuntos
Doenças da Córnea , Serina-Treonina Quinases TOR , Humanos , Doenças da Córnea/tratamento farmacológico , Inflamação/patologia , Transdução de Sinais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
13.
Curr Eye Res ; 48(6): 576-583, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36803084

RESUMO

PURPOSE: To investigate visual outcomes early after implantable collamer lens (ICL) V4c implantation between patients with fully corrected and under-corrected spectacles preoperatively. METHODS: Patients who implanted ICL V4c were divided into the full correction (46 eyes/23 patients) and under-correction groups (48 eyes/24 patients) based on preoperative differences between the spherical diopter of the spectacles and the actual spherical diopter. Refractive outcomes, scotopic pupil size, higher-order aberrations, and subjective visual outcomes as assessed using a validated questionnaire were compared between the two groups 3 months postoperatively. Moreover, the relationships between the severity of haloes and postoperative ocular or ICL parameters were analyzed. RESULTS: At the 3-month follow-up, the efficacy indices in the full correction and under-correction groups were 0.99 ± 0.12 and 1.00 ± 0.10, respectively; the safety indices were 1.15 ± 0.16 and 1.15 ± 0.15, respectively. Total-eye spherical aberration (p < 0.0001) and internal spherical aberration (p = 0.0005) were significantly different pre- and post-operatively in the under-correction group, while no differences were found in the full correction group. Total-eye spherical aberration (p = 0.002) and the severity of haloes (p = 0.03) were postoperatively different between the two groups. The severity of haloes was associated with postoperative spherical aberration (total-eye spherical aberration: r = -0.32, p = 0.002; internal spherical aberration: r = -0.24, p = 0.02). CONCLUSION: Good efficacy, safety, predictability, and stability were obtained early after surgery regardless of preoperative spectacle correction. Patients in the under-correction group possessed a shift to negative spherical aberration and reported greater severity of haloes at the 3-month follow-up. Haloes were the most common visual symptoms after ICL V4c implantation and the severity of them was correlated with postoperative spherical aberration.


Assuntos
Miopia , Lentes Intraoculares Fácicas , Humanos , Acuidade Visual , Óculos , Implante de Lente Intraocular , Seguimentos , Resultado do Tratamento , Miopia/cirurgia , Refração Ocular
14.
J Photochem Photobiol B ; 240: 112654, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724628

RESUMO

Long-term light exposure, especially in the spectrum of blue light, frequently causes excessive oxidative stress in dry age-related macular degeneration (AMD). Here, to gain insight into the underlying mechanism, we focused on mitochondrial dynamics alterations under long-term exposure to blue light in mouse and retinal cells. Six-month-old C57BL/6 mice were exposed to blue light (450 nm, 800 lx) for 2 weeks. The phenotypic changes in the retina were assayed using haematoxylin-eosin staining and transmission electron microscopy. Long-term blue light exposure significantly thinned each retinal layer in mice, induced retinal apoptosis and impaired retinal mitochondria. A retinal pigment epithelial cell line (ARPE-19) was used to verify the phototoxicity of blue light. Flow cytometry, immunofluorescence and MitoSox Red probe experiments confirmed that more total and mitochondria-specific ROS were generated in the blue light group than in the control group. Mito-Tracker Green probe showed fragmented mitochondrial morphology. The western blotting results indicated a significant increase in DRP1, OMA1, and BAX and a decrease in OPA1 and Bcl-2. In conclusion, long-term exposure to blue light damaged the retinas of mice, especially the ONL and RPE cells. There was destruction and dysfunction of mitochondria in RPE cells in vivo and in vitro. Mitochondrial dynamics were disrupted with characteristics of fusion-related obstruction after blue-light irradiation.


Assuntos
Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/etiologia , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial , Camundongos Endogâmicos C57BL , Retina/metabolismo , Estresse Oxidativo/efeitos da radiação , Luz , Epitélio Pigmentado da Retina
15.
BMC Ophthalmol ; 22(1): 456, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443719

RESUMO

BACKGROUND: Pathogenesis of posterior capsular opacification (PCO) was related to pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). It has been reported that blue light could have an effect on EMT. This study aims to elucidate the role and potential mechanism of autophagy in EMT after blue light exposure in LECs. METHODS: HLE-B3 cells were treated with TGF-ß2 with different concentration and time to induce EMT as a model of PCO in vitro. Cells were exposed to blue light with or without TGF-ß2. The expression levels of EMT-associated markers were analyzed by qRT-PCR, western blotting and cell migration ability was determined by transwell migration assay and wound healing assay. The expressions of autophagy-related proteins were analyzed by western blotting, immunofluorescence and transmission electron microscopy. Rapamycin and chloroquine were utilized in cells for autophagy activation and inhibition. RESULTS: TGF-ß2 induced autophagy activation during EMT progression in HLE-B3 cells in a dose- and time-dependent manner. Blue light exposure inhibited TGF-ß2-induced EMT characterized by inhibited expression of EMT related markers and reduced migration capacity. Meanwhile, blue light exposure impaired autophagy activated by TGF-ß2. Furthermore, Autophagy activation with rapamycin rescued EMT attenuated by blue light. Autophagy inhibition with chloroquine reduced TGF-ß2-induced EMT in HLE-B3 cells. CONCLUSION: Blue light exposure had inhibited effects on TGF-ß2-induced EMT in LECs through autophagy impairment, which provides a new insight on prevention and treatment of PCO.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta2 , Humanos , Autofagia , Cloroquina , Células Epiteliais , Sirolimo , Fator de Crescimento Transformador beta2/farmacologia , Luz
16.
BMC Ophthalmol ; 22(1): 451, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36418970

RESUMO

BACKGROUND: Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. METHODS: We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. RESULTS: Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. CONCLUSION: Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine.


Assuntos
Células Ependimogliais , Miopia , Humanos , Camundongos , Animais , Astrócitos , Neuroglia , Atropina , Retina , Modelos Animais de Doenças , Hipóxia , Mamíferos
17.
J Ophthalmol ; 2022: 5626479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855886

RESUMO

The pathogenesis of myopia is driven by genetic and environmental risk factors. Accommodation not only alters the curvature and shape of the lens but also involves contraction of the ciliary and extraocular muscles, which influences intraocular pressure (IOP). Scleral matrix remodeling has been shown to contribute to the biomechanical susceptibility of the sclera to accommodation-induced IOP fluctuations, resulting in reduced scleral thickness, axial length (AL) elongation, and axial myopia. The rise in IOP can increase the burden of scleral stretching and cause axial lengthening. Although the accommodation and IOP hypotheses were proposed long ago, they have not been validated. This review provides a brief and updated overview on studies investigating the potential role of accommodation and IOP in myopia progression.

18.
Cell Death Dis ; 13(5): 513, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641491

RESUMO

Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.


Assuntos
Epitélio Corneano , Proteínas Proto-Oncogênicas c-akt , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Curr Eye Res ; 47(6): 908-917, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35225751

RESUMO

PURPOSE: Wavelength signals play a vital role in refractive development. This study aimed to explore the retinal transcriptome signature in these processes. METHODS: Guinea pigs were randomly divided into three groups exposed to white, blue, or green environmental light for eight weeks. Refraction and axial length were evaluated every 4 weeks, and the retinal transcriptome was profiled at 8 weeks. RESULTS: Compared with the white group, ocular refraction significantly decreased and ocular axial length significantly extended in the green group whereas these parameters showed opposite trends in the blue group. RNA-sequencing showed that, compared with the white group, 184 and 171 differentially expressed genes (DEGs) were found in the blue and green groups, respectively. Among these DEGs, only 31 overlapped. These two sets of DEGs were enriched in distinct biological processes and pathways. There were 268 DEGs between the blue and green groups, which were primarily enriched in the extracellular matrix, and metabolism, receptor activity, and ion binding processes. In addition, nine human genes, including ECEL1, CHRND, SHBG, PRSS56, OVOL1, RDH5, WNT7B, PEBP4, CA12, were identified to be related to myopia development and wavelength response, indicating the potential role of these genes in human wavelength-induced myopia. CONCLUSIONS: In this study, we identified retinal targets and pathways involved in the response to wavelength signals in emmetropization.


Assuntos
Miopia , Transcriptoma , Animais , Modelos Animais de Doenças , Cobaias , Luz , Miopia/genética , Miopia/metabolismo , Refração Ocular , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA